ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343110398

SAM: Self-Attention based Deep Learning Method for Online Traffic
Classification

Conference Paper - August 2020

DOI: 10.1145/3405671.3405811

CITATIONS READS
4 1,070

8 authors, including:

Qing Li Tao Dai

Graduate School at Shenzhen, Tsinghua Unviersity ‘5 Tsinghua University

86 PUBLICATIONS 449 CITATIONS 54 PUBLICATIONS 221 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject Measurement Matrix Construction in Compressed Sensing View project

ot Congestion Control for Data Center Networks View project

All content following this page was uploaded by Qing Li on 18 August 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343110398_SAM_Self-Attention_based_Deep_Learning_Method_for_Online_Traffic_Classification?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343110398_SAM_Self-Attention_based_Deep_Learning_Method_for_Online_Traffic_Classification?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Measurement-Matrix-Construction-in-Compressed-Sensing?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Congestion-Control-for-Data-Center-Networks?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Li-125?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Li-125?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Li-125?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao-Dai-7?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao-Dai-7?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua-University?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao-Dai-7?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Li-125?enrichId=rgreq-628ecade7d8ac128c0aaa83cad4cb085-XXX&enrichSource=Y292ZXJQYWdlOzM0MzExMDM5ODtBUzo5MjU3OTI1MzYxMDkwNjRAMTU5NzczNzU0OTg5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SAM: Self-Attention based Deep Learning Method
for Online Traffic Classification®

Guorui Xie Qing Li"
Tsinghua University, Southern University of
Peng Cheng Laboratory Science and Technology,
Peng Cheng Laboratory
Gengbiao Shen Rui Li
Tsinghua University Tsinghua University
ABSTRACT

Network traffic classification categorizes traffic classes based
on protocols (e.g., HTTP or DNS) or applications (e.g., Face-
book or Gmail). Its accuracy is a key foundation of some
network management tasks like Quality-of-Service (QoS)
control, anomaly detection, etc. To further improve the ac-
curacy of traffic classification, recent researches have intro-
duced deep learning based methods. However, most of them
utilize the privacy-concerned payload (user data). Besides,
they generally do not consider the dependency of bytes in
a packet, which we believe can be exploited for the more
accurate classification. In this work, we treat the initial bytes
of a network packet as a language and propose a novel Self-
Attention based Method (SAM) for traffic classification. The
average F1-scores of SAM on protocol and application clas-
sification are 98.62% and 98.93%. With the higher accuracy
of SAM, better QoS and anomaly detection can be met.

CCS CONCEPTS

+ Networks — Network protocols; - Computing method-
ologies — Classification and regression trees.

“This work is supported by the National Key Research and Development
Program of China under Grant 2018YFB1800204 and the project "PCL Fu-
ture Greater-Bay Area Network Facilities for Large-scale Experiments and
Applications (LZC0019)".

Corresponding author, ligg@sustech.edu.cn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

NetAI'20, August 14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8043-0/20/08....$15.00
https://doi.org/10.1145/3405671.3405811

14

Tao Dai

Tsinghua University

Yong Jiang

Tsinghua University

Shutao Xia
Tsinghua University

Richard Sinnott

University of Melbourne

ACM Reference Format:

Guorui Xie, Qing Li, Yong Jiang, Tao Dai, Gengbiao Shen, Rui Li,
Richard Sinnott, and Shutao Xia. 2020. SAM: Self-Attention based
Deep Learning Method for Online Traffic Classification. In Work-
shop on Network Meets AI & ML (NetAI'20), August 14, 2020, Vir-
tual Event, NY, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/lO.l145/3405671‘3405811

1 INTRODUCTION

Network traffic classification categorizes traffic classes based
on protocols (e.g., HTTP or DNS) or applications (e.g., Face-
book or Gmail) [18]. It is vital in network management tasks
such as Quality-of-Service (QoS) control and anomaly de-
tection. [20]. To date, various types of methods have been
proposed to solve this problem. They can be divided into
three categories: payload inspection based methods, tradi-
tional machine learning (ML) based methods and deep learn-
ing (DL) based methods. Especially, the DL based methods
are proposed to generate features (signatures) adaptively
and achieve a much higher improvement. [13, 15, 19]. But
these DL based methods use the payload as the input, which
conflicts with user privacy protection. Besides, they ignore
the dependency of input bytes, which we believe can be
exploited for the more accurate classification.

Generally, a network packet consists of three parts: the
IP header, the transport layer (TCP/UDP) header, and the
payload. The initial bytes in different positions are relevant
and indicate meaningful information. Therefore, we treat the
first I bytes of a packet as a language during classification.
This means:

e User privacy can be guaranteed by limiting the number
of bytes used in the classification.

e We can exploit self-attention relating different posi-
tions of a single input sequence to compute a rep-
resentation of the sequence for further performance
improvement.

https://doi.org/10.1145/3405671.3405811
https://doi.org/10.1145/3405671.3405811
https://doi.org/10.1145/3405671.3405811

NetAl’20, August 14, 2020, Virtual Event, NY, USA

Accordingly, we propose a novel Self-Attention based Method
(SAM) in this paper. Self-attention, which has been used suc-
cessfully in language tasks, is first introduced into traffic
classification. Based on the experimental results, we find
that:

e SAM outperforms the other state-of-the-art methods.
The average F1-scores of SAM on protocol and appli-
cation classification are 98.62% and 98.93%.

e SAM shows a classification speed of 0.18 ms/packet
with a GTX 1080 Ti graphics card, which proves the
feasibility of SAM in the scenario of online differenti-
ated traffic scheduling.

2 RELATED WORK

2.1 Payload Inspection based Methods

Payload inspection checks the packet payload against a set of
known protocol signatures, e.g., ‘\GET’ signature in HTTP
traffic [11]. Some famous DPI libraries are libprotoident [1],
OpenDPI [22], and nDPI [8]. nDPI contains specialized pro-
tocol decoders of many well-known protocols (e.g., HTTP
and FTP). Also, it uses the port number as the priority of
decoders while parsing packets. For instance, a packet with
port 80 is likely parsed by HTTP decoder at first. However,
parsing payload involves privacy issues and raises some legal
issues [7]. Meanwhile, generating protocol decoders costs
much effort of domain experts and is useless on unpublished
protocols.

2.2 Traditional Machine Learning based
Methods

Traditional ML based methods assume that traffic can be
distinguished from each other via statistical features, e.g.,
per-flow duration or mean packet size. Auld et al. proposed
a Bayesian Neural Networks (BNN) with a series of packet
features for P2P traffic classification [2]. Gil et al. use K-
Nearest Neighbor and C4.5 decision tree algorithms with
time-related features, e.g., the duration of the flow, flow bytes
per second, and forward/backward arrival intervals [9]. Yun
et al. present Securitas, which uses the word bag model and
Latent Dirichlet Allocation to get the feature of protocols.
Then, a classifier, such as SVM, C4.5 decision tree and Bayes
Network, is constructed [23]. Most of these ML methods
depend on hand-crafted features, which is time-consuming
and error-prone especially with the rapid growth of network
traffic types.

2.3 Deep Learning based Methods

DL based methods are unlike traditional ML based methods
or packet inspection, because it does not rely on experts
to extract features (signatures). Moreover, it has a stronger

15

G. Xie et al.

capacity of learning in comparison to traditional ML methods
and thus can achieve a higher performance [19]. Thus, DL
attracts a lot of attention in traffic classification. Lotfollahi et
al. propose Deep Packet for traffic classification [15]. In Deep
Packet, an entire packet is passed to a DL based framework
for identification. The framework itself can be implemented
by either stacked Auto-encoders (SAE) or one-dimensional
CNN. Li et al. put forward an RNN based method called
BSNN for traffic classification [13]. In BSNN, the payload of
a packet is split into byte segments. These segments are then
fed into corresponding RNN encoders. Finally, a softmax
function is applied for classification. The RNN component of
BSNN is based on either Long Short-Term Memory (LSTM)
or Gated Recurrent Unit (GRU) [6].

Although these methods show a better performance, they
take payload for granted without considering the privacy
issues. Furthermore, none of them take the dependency of
bytes in a packet into account.

2.4 Self-Attention

In a human sentence, the words in different positions are
related. For instance, the subject can affect the forms of the
predicate (singular or plural), and the time adverbial deter-
mines whether the predicate adds "ed". Hence, self-attention
is proposed to consider different positions of a single se-
quence when it is employed to compute a representation of
the sequence [21]. It enables an extra performance improve-
ment and thus is widely used in some NLP tasks [5, 14, 17].

3 METHODOLOGY
3.1 Packet Format

A general packet contains the IP header, the transport layer
header, and the payload. Besides, the bytes in different po-
sitions affect each other. For instance, the "Version" in IP
header decides the length of "Source IP address" is either
four bytes (IPv4) or sixteen bytes (IPv6). Hence, the well-
formatted headers can be treated as a special language when
applications exchange information through it. Hence, self-
attention is unitized in SAM for the reason that self-attention
is presented to make use of positions in a language sequence
and compute a better representation of that sequence.

3.2 The Structure of SAM

The structure of SAM is provided in Figure 1. We now discuss
all the main components in detail.

Preprocessing. Since headers lie at the beginning of a
packet, we choose the initial [bytes of a packet as the input
of SAM. For connection-oriented traffic, the common header
length is 40 bytes, which is larger than that of connection-
less traffic. And connection-oriented protocols are more com-
monly used. Thus, a 40-byte vector (I = 40) p is selected. Note

SAM: Self-Attention based Deep Learning Method
for Online Traffic Classification

Traffic
Packet

Preprocess
Embedding

—————- =7 "" 1

1 iti M, 1

P05|t|pn . |

| Encoding \

1 1

1 [

1 M, 1
Learned 1

—+» 1

I Embedding I

Layer Norm

NetAl’20, August 14, 2020, Virtual Event, NY, USA

Back Propagation

AN

Probability

Softmax

Simple CNN

Weights

Figure 1: The structure of SAM. There are four main components in SAM, including the preprocessing, the em-

bedding, the encoder, and the classifier.

that limiting the number of bytes used in a packet is helpful
on user privacy protection. There are some techniques that
confuse the classifier including random port assignment and
network address translation (NAT). Hence, we mask the IP
address and the port number with zeros to get rid of this
confusion.

Embedding. Embedding contains two sub-components:
position encoding and learned embedding. As is described in
Section 3.1, the bytes in different positions affect each other,
so we need to factor in the position information in SAM.
Thus, the position encoding is introduced [21]. The position
encoding encodes the position pos of a byte in a given input
sequence to a d-dimensional position vector PE,,s through
the following equations:

PE (pos 2i) = sin(pos/10000%/4) (1)

)

where 2i,2i + 1 € [0,d — 1] is the channel of the vector to
be generated. We select sine and cosine functions with a
constant 10000. Thus, each dimension of the output corre-
sponds to a sinusoid. And the wavelengths form a geometric
progression in [27, 10000 X 27r]. These operations allow the
model to learn the relative positions since for any fixed offset
k, PEpos4k can be described as a linear function of PE,s.

The learned embedding is used to enrich the meaning of
each byte in vector p [4]. Specifically, let p; € [0, 255] be an
element of p, we have:

PE(pOS,2i+1) = COS(POS/loooozi/d)

y; = Wonehot(p;) 3)

where onehot denotes the one hot encoding for p;; W} is the
learned transformation matrix that is updated adaptively
during training, and y; is the (converted) d-dimensional em-
bedding vector.

Therefore, for each p; € p, we have a PE,,s and a y;
respectively. For p, we subsequently have M, = F,o5(p)

16

and M = Femp (p) where Fyos and Fepy, denote the position
encoding and learned embedding respectively. M, and M;
are the corresponding results in the form of matrix.

Encoder. As is shown in Figure 1, each encoder includes
the self-attention, the residual connection, the layer normal-
ization, and a simple one-dimensional CNN.

Self-attention can be described as a function that maps
three matrices: Query (Q), Key (K) and Value (V) to a weighted
result W, V. "Self" indicates that Q = K = V [21]. W, is given

as:
T

0K
T) (4)

where d’ is the dimension of K. The softmax function here
is defined as:

W, = softmax(

eV

Z eYi

i

softmax(y); = (5)
where we apply the exponential function to each element y;
of the input vector y and normalize these values by dividing
the sum of all the associated indices. Moreover, the input
of the encoder is a matrix in R>? which is so large that
applying the self-attention on it may result in the loss of
local information. Therefore, we divide the d channels into
h groups (so d’ = d/h). The specific procedures of our self-
attention are shown in Figure 2.

Linear Projection_
Linear Projection

PR ——

Figure 2: The self-attention. We divide the d channels
into h groups (so d’ = d/h) and apply the self-attention
mechanism respectively.

NetAl’20, August 14, 2020, Virtual Event, NY, USA

Practice shows that deeper networks sometimes work
better, so we cascade n encoders to deepen SAM. But deep
networks have the characteristics of slow training. Thus, we
use the residual connection [10] and the layer normaliza-
tion [3] to speed up the training. The residual connection
can be described as y = F(x)+x where the function F denotes
some operations (self-attention or CNN) performed on input
x. In Figure 1, the two "+" symbols in the encoder component
show the residual connection, the left arrow of "+" indicates
F(x), well the top arrow means x. It is worth mentioning
that the residual connection requires us to ensure that the
input dimension dy and the output dimension d, are always
the same. Hence we set dy = d,, = d, where d is the dimen-
sion of the embedding vector mentioned before. Besides, the
layer normalization maps the elements of output y to floats
ranging from 0 to 1 to help with the convergence.

The structure of CNN in the encoder is simple. There
is one convolution layer followed by ReLU and Maxpool
respectively. The settings of convolution and pooling layers
in the CNN module are given as: kernel = 3, stride = 1,
pad = 1.

Classifier. The result of the last encoder is a feature ma-
trix M’ € R4, We sum it up by row to get a feature vector
v € R Then we apply a linear projection on v to get the
vector vy € RN, where N is the number of categories. vy is
the input of the softmax function:

o = softmax(vp) (6)
where softmax is defined in Equation (5). Each element value
o; € o represents the probability that the packet belongs to
the corresponding category j. If o; has the maximum value,
the label j is selected as the final prediction.

Meanwhile, in the training phase, the cross-entropy loss

-2 logo;

o

is generated based on Loss = where o is the

class probability vector in Equation (6), and j represents the
true class index. T is the number of packets in the current
training batch. All variables in SAM will be updated by back
propagation with Loss.

4 EXPERIMENTAL EVALUATION
4.1 Experiment Setup

Dataset. The details of these datasets are shown in Table 1.
We utilize two datasets in our evaluation: i) The protocol
dataset that contains traffic of nine protocols. These protocols
are famous, and we capture their traffic via their registered
port number in our lab. ii) The application dataset is the UNB
ISCX VPN-nonVPN dataset which contains traffic of 17 ap-
plications including Facebook, YouTube, etc. [9]. Originally,
these traffics are labeled by the actions that generates them

17

G. Xie et al.

(browsing, email, etc.), we relabel them by their generating
applications.

We identify the packets of different protocols (DNS, HTTP,
etc.) on dataset i, different applications (Gmail, Youtube, etc.)
on dataset ii. These datasets are randomly split as follows:
60% for training, 20% for validation, and 20% for testing. In all
the experiments, the model which has the best performance
on validation is chosen for testing.

Table 1: Details of datasets.

Dataset i Dataset ii
Class Packet amount Class Packet amount Class Packet amount
Bittorrent 11833 AIM chat 1785 SFTP 416813
DNS 2483 Email 17578 Skype 23710
Finger 158 Facebook 11233 Spotify 40592
HTTP 10067 FTPS 3784620 Tor 326251
HTTPS 27341 Gmail 11014 Torrent 108227
SMTP 110 Hangouts 984241 Vimeo 145947
SSH 3959 1CQ 1106 Voipbuster 2480
eDonkey 82828 Netfiix 299057 YouTube 209785
Whois 1615 SCp 447792

Baselines. For protocol classification, a payload inspec-
tion based method (nDPI), a traditional machine learning
based method (Securitas), and two deep learning based meth-
ods (BSNN, Deep Packet) are compared with SAM. These
methods are introduced in Section 2. As is mentioned, these
methods have different implementations. For Securitas, the
classifier can be SVM (Securitas-SVM), C4.5 decision tree
(Securitas-C4.5) or BN (Securitas-Bayes). For BSNN, the struc-
ture can be based on LSTM (BSNN-LSTM) or GRU (BSNN-
GRU). For Deep Packet, SAE (DeepPacket-SAE) or CNN
(DeepPacket-CNN) can be the classifier.

Metrics. We calculate Recall (R.), Precision (I}j)f’ and F1-

TP +FN’
2 X Recall X Precision

score (F1.) for each class as follows: Recall =
TP

Precision = ,Fl-score =

+ Recall + Precision
where TP, FP and FN stand for true positive, false positive

and false negative, respectively. For each class, TP represents
the number of packets sorted into the (true) correct class. FP
refers to the number of instances that are incorrectly cate-
gorized into a particular class. FN represents the number of
instances that are classified into other classes but actually
belong to a particular class. In detail, when calculating F1 of
class A, instances of class A are regarded as the positive class,
while instances of other classes (B, C, etc.) are all regarded
as the negative class. This procedure is the same as that in
[13].

Implementation of SAM. For SAM, we use the Adam op-
timizer, batch_size = 64, and dropout ratio is 0.1 [12]. Other
significant hyper-parameters are chosen by grid search: the
embedding vector dimension d = 256, the self-attention
group h = 4, and the number of encoders n = 2. We utilize
PyTorch, the high-performance DL library, to implement
SAM [16].

SAM: Self-Attention based Deep Learning Method
for Online Traffic Classification

NetAl’20, August 14, 2020, Virtual Event, NY, USA

Table 2: Protocol classification results on dataset i.

Protocols Bittorrent DNS Finger HTTP HTTPS

Metrics R% P.% F1.% R% P.% F1.% R.% P.% F1.% R% P.% F1.% R% P.% | F1.%
nDPI 70.73 40.94 51.86 74.04 52.33 | 61.32 - - 86.83 86.34 86.58 - - -

Securitas-SVM - - - 41.91 82.11 55.49 - - 99.61 67.20 80.25 100.00 | 62.67 | 77.05
Securitas-C4.5 97.43 | 100.00 | 98.70 99.57 | 100.00 | 99.78 || 81.25 | 100.00 | 89.66 56.13 99.82 71.86 99.88 | 63.77 | 77.85
Securitas-Bayes 96.15 92.49 94.28 100.00 | 97.57 | 98.77 92.31 | 100.00 | 96.00 53.21 92.93 67.67 28.92 | 99.41 | 44.80
BSNN-GRU 97.25 99.90 98.56 98.76 98.56 | 98.66 || 100.00 | 96.43 | 98.18 | 69.41 97.71 81.16 29.17 | 99.52 | 45.12
BSNN-LSTM 97.30 98.51 97.90 99.59 93.77 | 96.59 || 100.00 | 81.82 | 90.00 63.76 95.76 76.55 39.90 | 67.25 | 50.09
DeepPacket-CNN | 96.39 99.37 97.86 98.99 98.40 | 98.69 - - 94.24 94.71 94.47 97.78 | 96.98 | 97.38
DeepPacket-SAE | 94.78 98.18 96.45 99.18 97.37 | 98.27 - - 88.80 90.63 89.70 95.73 | 94.40 | 95.06
SAM 99.67 99.83 99.75 98.96 | 100.00 | 99.48 || 100.00 | 93.75 | 96.77 98.94 99.09 99.02 99.65 | 99.60 | 99.62

Protocols SMTP SSH eDonkey Whois Average
Metrics R% P.% F1.% R% P.% F1.% R.% P.% F1.% R% P.% F1.% R% P.% | F1.%
nDPI 94.55 16.05 27.44 94.25 89.15 | 91.63 - - 94.98 74.43 83.46 57.26 | 39.92 | 44.70
Securitas-SVM - - - - - - 97.91 65.62 | 78.57 - - - 37.71 | 30.84 | 32.37
Securitas-C4.5 100.00 | 100.00 | 100.00 - - - 64.62 98.91 | 78.17 || 100.00 | 100.00 | 100.00 | 77.65 | 84.72 | 79.56
Securitas-Bayes | 100.00 | 100.00 | 100.00 || 29.24 | 100.00 | 45.25 55.65 96.37 | 70.56 95.65 97.78 96.70 72.35 | 97.39 | 79.34
BSNN-GRU 70.00 93.33 80.00 2.99 62.16 5.70 99.73 76.12 | 86.34 96.77 97.83 97.30 73.79 | 91.28 | 76.78
BSNN-LSTM 75.00 83.33 78.95 2.86 45.83 5.38 95.98 78.26 | 86.22 || 100.00 | 95.88 97.89 74.93 | 82.27 | 75.51
DeepPacket-CNN - - - 99.08 95.30 | 97.15 99.85 99.50 | 99.67 82.34 82.34 82.34 74.30 | 74.07 | 74.17
DeepPacket-SAE - - - 97.75 95.24 | 96.48 99.66 98.97 | 99.31 60.42 69.69 64.72 70.70 | 71.61 | 71.11
SAM 91.67 95.65 93.62 99.88 | 100.00 | 99.94 || 99.98 | 99.91 | 99.94 || 99.14 99.71 99.43 98.65 | 98.62 | 98.62

4.2 Metric Results of Different Methods

100 5
’o@ go| “va R. ?
2 80 P. N
= LR ol % N
£ 70 M7E giE BdE NG RPE g 4
2 NG 97 e NEE SPIE WS X
s o o NP §H S N R 8 NOE N
S 50| # NAE RlE WAE N R NEE X
5 s D 9 ¥ > 4 <A
£ a0 § NiE e NE WiE e e
a P s B B 995 5= Bfs o
o 30 § NOE 89 WE NilE edE EE N

\
o b @ g o ot

6P @D Y (WY @
(\{c) ‘_’6 ,@6) GV\ O 2C
c)e(’\) 6’30)(,@0)(\ e 259? ° eex)?

Different Classification Methods

Figure 3: The average recall, precision, and F1-score of
different methods on protocol classification.

0.6

0.5 —e— BSNN-GRU
- BSNN-LSTM
un 0.4 —»— DeepPacket-CNN
GEJ 0'2 DeepPacket-SAE
IS . SAM

0.1

’ 3 6 9 12 15 18

Batch (64 samples)

Figure 4: The average training time.

18

Protocol classification. Experiment results on dataset i
are shown in Table 2. For nDP], there are no results of Finger,
HTTPS, and eDonkey because no expert makes an effort to
add the corresponding decoders. As for Securitas, although
Securitas-C4.5 and Securitas-Bayes have an F1-score of 100%
on DNS and SMTP, these are binary classifiers and easier
than SAM. Furthermore, on protocols like Bittorrent, Finger,
SSH, etc., Securitas predicts all their packets as negative or
positive, which makes no sense. As for BSNNs (BSNN-GRU
and BSNN-LSTM), their performance is unstable. The F1-
score ranges from 5% (SSH) to 98% (Finger). Especially, the
F1-score is lower on encrypted protocols (HTTPS 45%, SSH
5%). Although DeepPacket-CNN and DeepPacket-SAE have
a high performance (over 94%) on many protocols including
Bittorent, DNS, HTTPS, etc., they can not handle the rare
traffic. For instance, the traffic of Finger and SMTP is rare,
which causes a failure of Deep Packet. Generally, SAM has
superiority over other methods: it has the highest average
Recall (98.65%), Precision (98.62%), and F1-score (98.62%). Fur-
thermore, Figure 3 gives an intuitive feeling about average
metrics of different methods.

Application classification. The results on dataset ii are
illustrated in Table 3. As nDPI and Securitas are protocol-
oriented classifiers, they are not listed in this table. According
to Table 3, BSNNs have the poorest average F1-score (below
45%) even though the author claims the support of applica-
tion classification. We argue that their experiments are not
sufficient, because they only compared five applications [13].

NetAl’20, August 14, 2020, Virtual Event, NY, USA G. Xie et al.
Table 3: Application classification results on dataset ii.
Applications AIM chat Email Facebook FTPS Gmail Hangouts
Metrics R.% P.% F1.% R% P.% | F1.% R% P.% | F1.% R% P.% | F1.% R% P.% F1.% R% P% | F1.%
BSNN-GRU 19.23 | 76.27 | 30.72 69.96 | 78.33 | 73.91 52.17 | 93.90 | 67.07 || 60.80 | 82.86 | 70.14 || 99.58 | 99.04 | 99.31 || 70.25 | 86.73 | 77.63
BSNN-LSTM 22.22 | 5532 | 31.71 80.14 | 83.04 | 81.57 72.66 | 73.23 | 72.94 || 63.05 | 85.99 | 72.75 || 99.46 | 99.65 | 99.55 || 64.46 | 97.50 | 77.61
DeepPacket-SAE | 88.08 | 89.53 | 88.80 77.96 | 78.36 | 78.16 99.73 | 99.68 | 99.70 || 83.50 | 87.24 | 85.33 || 99.80 | 99.74 | 99.77 || 91.55 | 95.51 | 93.49
DeepPacket-CNN | 88.62 | 85.49 | 87.03 59.70 | 82.67 | 69.33 99.72 | 99.87 | 99.80 || 88.67 | 88.87 | 88.77 || 99.82 | 99.79 | 99.81 || 83.41 | 95.09 | 88.87
SAM 97.67 | 96.61 | 97.14 | 99.02 | 93.66 | 96.26 || 99.98 | 99.60 | 99.79 || 97.29 | 92.62 | 94.90 || 99.88 | 99.96 | 99.92 || 94.25 | 98.76 | 96.45
Applications 1CQ Netflix SCP SFTP Skype Spotify
Metrics R.% P.% F1.% R% P.% | F1.% R% P.% | F1.% R% P% | F1.% R% P.% F1.% R% P% | F1.%
BSNN-GRU 2.31 80.11 4.49 10.72 | 99.80 | 19.36 10.72 | 99.80 | 19.36 || 11.16 | 98.02 | 20.04 | 75.10 | 85.14 | 79.81 245 | 22.83 | 443
BSNN-LSTM 4.95 88.42 9.37 10.73 | 99.77 | 19.37 10.73 | 99.77 | 19.37 || 11.20 | 98.40 | 20.11 || 78.06 | 93.25 | 84.98 5.15 | 69.85 | 9.59
DeepPacket-SAE | 99.72 | 99.73 | 99.72 | 99.99 | 99.98 | 99.99 || 99.99 | 99.98 | 99.99 | 99.81 | 99.86 | 99.83 | 98.51 | 98.55 | 98.53 || 97.41 | 97.84 | 97.62
DeepPacket-CNN | 99.63 | 99.82 | 99.72 99.99 | 99.97 | 99.98 99.99 | 99.97 | 99.98 | 99.88 | 99.94 | 99.91 || 99.21 | 97.66 | 98.43 || 97.83 | 96.41 | 97.11
SAM 99.95 | 100.00 | 99.98 || 100.00 | 99.99 | 99.99 || 100.00 | 99.99 | 99.99 || 99.98 | 99.96 | 99.97 || 99.51 | 99.95 | 99.73 || 99.69 | 98.14 | 98.91
Applications Tor Torrent Vimeo Voipbuster YouTube Average
Metrics R.% P.% F1.% R% P.% | F1.% R% P.% | F1.% R% P.% | F1.% R% P.% F1.% R% P% | F1.%
BSNN-GRU 17.01 | 98.99 | 29.03 4.04 73.72 | 7.65 7.59 83.68 | 13.92 || 77.39 | 98.22 | 86.57 4.34 73.65 8.21 34.99 | 84.18 | 41.86
BSNN-LSTM 17.30 | 98.59 | 29.44 11.44 | 94.33 | 20.40 9.04 73.81 | 16.11 || 85.08 | 89.46 | 87.22 5.26 66.92 9.75 38.29 | 86.31 | 44.81
DeepPacket-SAE | 99.90 | 99.89 | 99.90 | 98.78 | 98.69 | 98.73 || 98.87 | 99.43 | 99.15 || 99.88 | 99.92 | 99.90 || 99.47 | 98.82 | 99.14 || 96.06 | 96.63 | 96.34
DeepPacket-CNN | 99.88 | 99.96 | 99.92 98.75 | 98.68 | 98.72 99.13 | 99.44 | 99.28 || 99.87 | 99.90 | 99.88 || 99.57 | 98.86 | 99.21 || 94.92 | 96.61 | 95.63
SAM 99.95 | 99.89 | 99.92 | 99.32 | 99.36 | 99.34 || 99.89 | 99.95 | 99.92 || 99.98 | 99.97 | 99.97 || 99.22 | 100.00 | 99.61 || 99.15 | 98.73 | 98.93
100 & BSNN-GRU
BSNN-LSTM
3 DeepPacket-CNN
_g DeepPacket-SAE
< 80 1 | % SAM
=
=
(<]
60 | ER i I
<
o
o
w
540 I MR i |
w
() g
g) y
g 20 | N bl s I | i - |
< ' 1 q ! N
) g vt ' i
) - g D [} p (] ki D K
0 K X) (| b (| H] (|]
X N N S N S Q ok s \3 e &y X * 0 < e
B o 0% <% A N T A O -2\ % O <0t o ef a@
A @ (00 T @ o0 W@ SV N i S @ o
N\ o< \/@\Q W & o <o N \10"9“ =

Different Applications

Figure 5: The average F1-score of different DL methods on application classification. Generally, SAM and Deep-

Packet are better on ICQ, Spotify, etc.

As for Deep Packet and SAM, their average F1-score is over
95%. Especially, SAM has the highest average F1-score of
98.93%. Figure 5 gives an intuitive feeling about average F1-
score of different methods too. Besides, in this experiment,
we use a GTX 1080 Ti graphics card and the CPU is Intel
(R) Xeon (R) E5-2603 v2 @ 1.80 GHz. Figure 4 describes the
time spent per batch of different models. As seen, SAM is
faster (50x) than BSNNs. As there are 64 packets per batch,
the average speed of SAM is 0.18 ms/packet, which is fast
enough for online traffic classification.

19

5 CONCLUSION

In this paper, we present a novel Self-Attention based Method
(SAM) to explore the correlation among input bytes. To the
best of our knowledge, this is the first attempt to introduce
self-attention into traffic classification. Besides, user privacy
is guaranteed by limiting the number of packet bytes. SAM
gains the highest F1-score on the protocol (98.62%) and appli-
cation (98.93%) classification than other methods. Moreover,
the speed of SAM is 0.18 ms/packet, which is faster (50x)
than that of BSNN.

SAM: Self-Attention based Deep Learning Method
for Online Traffic Classification NetAl’20, August 14, 2020, Virtual Event, NY, USA

REFERENCES 76-81.

[1] Shane Alcock and Richard Nelson. 2012. Libprotoident: Traffic Classifi- [19] J'L'lrgen. Schmidhuber. 2015. Deep Learning in Neural Networks: An
cation using lightweight packet inspection. Technical Report. WAND Overview. Neural Networks 61 (2015), 85-117.
Network Research Group. [20] Bagui Sikha, Fang Xingang, Kalaimannan Ezhil, Bagui Subhash C, and

[2] T. Auld, A. W. Moore, and S. F. Gull 2007. Bayesian Neural Networks Sheehan Joseph. 2017. Comparison of Machine-Learning Algorithms
for Internet Traffic Classification. Transactions on Neural Networks 18 for Classification of VPN Network Traffic Flow Using Time-Related

(2007), 223-239. Features. Journal of Cyber Security Technology 1, 2 (2017), 108-126.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer [21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
normalization. arXiv preprint arXiv:1607.06450 (2016). Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017.

[4] YoshuaBengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. Attention is All YO‘? Need. In P roceedings of the 30th A”’f”“l Conference
2003. A Neural Probabilistic Language Model. Journal of Machine on Neural Information Processing Systems. Curran Associates, Inc., New
Learning Research 3 (2003), 1137-1155. York.)) _

[5] Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short- [22] Yong Wei, Z Yun-Feng, and Li-chao Guo. 2011. Analysis of message
term memory-networks for machine reading. arXiv preprint identification for OpenDPIL. Computer Engineering (2011), S1.
arXiv:1601.06733 (2016). [23] Xiaochun Yun, Yipeng Wang, Yongzheng Zhang, and Yu Zhou. 2016.

A semantics-aware approach to the automated network protocol iden-

[6] Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Ben-
tification. Transactions on Networking 24, 1 (2016), 583-595.

gio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. arXiv preprint arXiv:1412.3555 (2014).
[7] A. Dainotti, A. Pescape, and K. C. Claffy. 2012. Issues and Future
Directions in Traffic Classification. Network 26, 1 (2012), 35-40.
[8] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo
Cardigliano. 2014. ndpi: Open-source high-speed deep packet inspec-
tion. In Proceedings of the 2014 International Wireless Communications
and Mobile Computing Conference. IEEE, Washington, DC., 617-622.
Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam
Mamun, and Ali A. Ghorbani. 2016. Characterization of Encrypted and
VPN Traffic Using Time-Related Features. In Proceedings of the 2nd
International Conference on Information Systems Security and Privacy.
SciTePress, Setubal, Portugal, 407-414.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the 2016 Con-
ference on Computer Vision and Pattern Recognition. IEEE, Washington,
DC., 770-778.
[11] Jawad Khalife, Amjad Hajjar, and Jesus Diaz-Verdejo. 2014. A Multi-
level Taxonomy and Requirements for an Optimal Traffic-classification
Model. International Journal of Network Management 24, 2 (2014), 101—
120.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).
Rui Li, Xi Xiao, Shiguang Ni, Haitao Zheng, and Shutao Xia. 2018.
Byte Segment Neural Network for Network Traffic Classification. In
Proceedings of the 26th International Symposium on Quality of Service.
ACM, New York, 1-10.
Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing
Xiang, Bowen Zhou, and Yoshua Bengio. 2017. A structured self-
attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017).
[15] Mohammad Lotfollahi, Ramin Shirali Hossein Zade, Mahdi Jafari
Siavoshani, and Mohammdsadegh Saberian. 2017. Deep Packet: A
Novel Approach For Encrypted Traffic Classification Using Deep Learn-
ing. arXiv preprint arXiv:1709.02656 (2017).
[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. 2019. PyTorch: An imperative style, high-
performance deep learning library. In Proceedings of the 2019 Advances
in Neural Information Processing Systems. Curran Associates, Inc., New
York, 8024-8035.
Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep
reinforced model for abstractive summarization. arXiv preprint
arXiv:1705.04304 (2017).
Shahbaz Rezaei and Xin Liu. 2019. Deep learning for encrypted traffic
classification: An overview. Communications Magazine 57, 5 (2019),

—
=}
-

[10

=

—
—
Do

—

[13

—_

[14

=

(17

—

(18

=

20

https://www.researchgate.net/publication/343110398

	Abstract
	1 Introduction
	2 Related Work
	2.1 Payload Inspection based Methods
	2.2 Traditional Machine Learning based Methods
	2.3 Deep Learning based Methods
	2.4 Self-Attention

	3 Methodology
	3.1 Packet Format
	3.2 The Structure of SAM

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Metric Results of Different Methods

	5 Conclusion
	References

